无标题文档
论文摘要内容

题名:

 汽车用超高碳特高强度钢帘线冷拉拔技术研究

作者:

 陶学伟

语种:

 chi

学科:

 材料加工工程

学位:

 工程硕士

学校:

 南京工程学院

院系:

 机械工程学院

专业:

 机械工程

导师姓名:

 王章忠

完成日期:

 2015-04-30

题目(外文):

 Research on the Cold Drawing Technique of Ultra-high Carbon and Strength Steel Cord Used in Automobile

关键字(中文):

 钢帘线 冷拉拔 断裂分析 组织控制 镀层改进

关键字(外文):

 Steel cord Cold drawing Fracture analysis Microstructure control Improvement in cladding

文摘:

 

钢帘线具有强度高、柔性好等优点,是绿色环保轮胎的主要骨架材料,在推动汽车轻量化过程中起着重要作用。然而国内特高强度钢帘线生产技术有限,不能满足新型环保轮胎较高层次需求,严重阻碍了我国高品质轮胎产品的发展。因此,研究超高碳高强度钢帘线冷拉拔技术,对实现特高强度钢帘线生产自主化及提高国产轮胎产品的国际竞争力具有双重意义。

本文研究了高碳钢丝在湿拉过程中的断裂原因,以此遴选出优质盘条,对等温铅浴淬火工艺进行了优化试验,并提出有效改善钢丝镀层质量的途径,主要结论如下:

钢丝在湿拉过程中,主要发生杯锥型断裂和撕裂型断裂,尤其以杯锥型断裂居多。杯锥型断裂的形成与较大尺寸非金属夹杂物、异常组织、拉拔工艺等有关;而钢丝表面或近表面存在缺陷是导致撕裂型断裂的重要原因。

在此基础上,遴选出KSC92E盘条作为拉拔材料,并优化出其直径Ф0.84mm钢丝的等温铅浴淬火工艺。研究发现,提高奥氏体化加热温度,延长保温时间,降低铅浴温度,有利于抑制先析出铁素体、粒状渗碳体等组织析出;同时促进珠光体转化,并细化珠光体片层间距。当奥氏体化加热温度区升到1045/1030/1000/980℃,保温时间为16.4s,铅浴淬火温度降为585℃时,钢丝内部珠光体含量高,片层较细且均匀,其抗拉强度、断面收缩率和硬度均达到最大。工业应用效果表明,该工艺制造的钢丝拥有良好的连续拉拔能力,断丝率仅为4~7次/t,与之前工艺相比,降低了30~50%,且其湿拉单丝的抗拉强度和疲劳寿命分别达到4000 MPa级和40000周次。

采用本文设计的表面清洁工艺和返镀工艺不仅可以有效解决镀层缺陷问题,提高和恢复钢丝拉拔性能,而且能够提高生产效率,延长模具使用寿命,降低资源浪费和制造成本。

文摘(外文):

 

Steel cord which has high strength and excellent flexibility is a primary framework material of the green environmental protection tire. It plays an important role in pushing the automobile lightening forward. However, the domestic ultra-high strength steel cord cannot meet the higher-order needs of the modern environmental protection tire because of its outmoded manufacturing technology, which hinder the development of the high-quality tire. It has twofold significance for realizing the independent manufacture of steel cord and enhancing the international competitiveness of domestic tire to study the cold drawing technique of ultra-high carbon and strength steel cord.

The reason for fracture of high carbon steel wire during the wet wire drawing has been investigated. According to the analysis, the high quality steel rod was selected, and the isothermal patenting process was optimized. Furthermore, the solutions of improvement in the quality of cladding were also raised. The main results are as follows:

The cup-cone fracture and laceration fracture occurred during the wet wire drawing, and the former was in the majority. The formation of cup-cone fracture was related to the coarse non-metallic inclusion, abnormal structure and drawing process. The defects in the surface or near surface were the main reasons for the laceration fracture.

Based on the above analysis, the KSC92E steel rod was selected as the drawing material, and the isothermal patenting for the steel wire with diameters of 0.84 mm was optimized. The results showed that the precipitation of the proeutectoid ferrite and granulated cementite was retarded by elevating the austenizing temperature, prolonging the austenizing time, and decreasing the lead bath temperature, and meanwhile promoting the transformation of pearlite and refining the lamellar space. When the austenizing temperature zone rised to 1045/1030/1000/980 ℃, holding for 16.4 s, and the lead bath temperature decreased to 585 ℃, the steel wire had the high pearlite content, the fine and uniform lamellar, and its tensile strength, reduction of area, hardness all reach to maximum. The industrial application results showed that the steel wire manufactured by this process possessed the excellent continuous drawing ability, and the breakage ratio of the wire was just 5 ~ 7 breaks / t, which was decreased by 30 % ~ 50 % compared with that of the previous processes. The tensile strength and fatigue life of its wet wire drawing filament achieved the level of 4000 MPa and 40000 cycles, respectively.

The surface cleaning process and re-plating process designed in this thesis can not only solve the defect problem of the cladding, enhancing and recovering the drawing properties of steel wire, but also improve the production efficiency and the working life of the passing dies, and reduce the waste of resource and the cost of the manufacture.

参考文献:

[1] 庄继德. 汽车轮胎学[M]. 北京: 北京理工大学出版社, 1995. [2] 蔡习舟. 轮胎轻量化设计对轮胎滚动阻力的影响[J]. 轮胎工业, 2013, 2(33): 82-85. [3] 刘琦, 陈强, 杨建园. 轮胎滚动阻力对整车燃油经济性的影响[J]. 汽车零部件, 2011, (8): 77-78. [4] 张熹, 王春旭, 史庆南. 子午线轮胎钢帘线用钢丝的工艺现状[J]. 钢铁研究学报, 2007, 19(1): 1-5. [5] 黄宝, 何立波, 高真风, 等. 亚洲帘线钢线材生产现状及发展趋势[J]. 金属制品, 2011, 37(6): 43-51. [6] 余蓉, 吴玮, 郭永铭. 钢帘线钢的生产与发展[J]. 特殊钢, 2004, 26(63): 1-5. [7] 王天冲. 橡胶工业手册-生产钢帘线[M]. 北京: 化学工业出版社, 2001. [8] 黄丽萍. 绿色发展时期的贝卡尔特[J]. 轮胎工业, 2012, 59(1): 58-59. [9] 何晓红. 中国钢帘线行业发展展望[A]. 2012《中国橡胶》杂志社年会论文集[C]. 北京: 中国橡胶杂志编辑部, 2012. 138~141. [10] 王宝玉, 宋为, 张琼, 等. 我国钢丝帘线行业的市场预测与竞争结构分析[J]. 轮胎工业, 2010, 30(2): 74-7. [11] H. Tashiro. 高拉伸强度钢帘线的先进生产技术[J]. 鞍钢技术, 2006, 342 (6): 53-56. [12] 潘庆飞. 轮胎钢帘线的现状及其发展趋势[A]. 2011金属制品行业技术信息交流会论文集[C]. 郑州: 金属制品杂志编辑部, 2011. 29~31. [13] 丁立. 大应变冷拉拔索氏体钢丝的力学性能与微观组织[D]. 南京: 南京理工大学, 2008. [14] 涂益友. 高速大应变冷拔钢丝的组织和力学性能[D]. 南京: 东南大学, 2006. [15] 曹秀岭, 翟振华. 帘线钢丝铅浴淬火与水浴淬火组织性能对比[J].金属制品, 2010, 36(4): 39-42. [16] W. Kolb, W. Weidenhaupt. A new generation in brass plating of steel wire for tire cord[J]. Hutnik, Wiadomosci Hutnicze, 2005, 72(2):81-85. [17] 刘波. 高碳钢丝及制品的塑性加工工艺与组织性能研究[D]. 西安: 西安建筑科技大学, 2004. [18] 徐萍, 王伯健, 马雪定. 高碳钢丝生产中的失效分析[J]. 材料开发与应用, 2008, 23 (4): 8-12. [19] 董述峰. 中高碳钢丝组织性能及工艺的研究[D]. 武汉: 武汉科技大学, 2011. [20] J. Toribio. Relationship between microstructure and strength in eutectoid steels[J]. Materials Science and Engineering A, 2004, 387-389: 227-230. [21] 王燕, 方峰, 王雷, 等. 冷拔索氏体钢丝渗碳体微观结构[J]. 材料热处理学报, 2010, 31(5): 92-95. [22] X. D. Zhang, A. Godfrey, X. X. Huang, et al. Microstructure and strengthening mechanic- -csms in cold-drawn pearlitic steel wire[J]. Acta Materialia, 2011, 59(3): 3422-3430. [23] 马驰. 连续大应变冷拔索氏体钢丝的组织性能研究[D]. 南京: 东南大学, 2009. [24] 杨金艳, 肖良辰. 钢丝杯锥型断口断裂机理[J]. 金属热处理, 2012, 37(12): 116-118. [25] 万国喜, 孙汝林, 翟林甫, 等. 预应力钢丝及钢绞线用SWRH77B盘条拉拔断裂原因分析[J]. 金属制品, 2011, 37(2): 46-49. [26] 杨初玲, 王忠海, 葛培德. 帘线钢丝湿拉过程断丝分析[J]. 金属制品, 2013, 39(6): 6-9. [27] 覃之光,郑云峰,沈金龙.高碳钢线材表面缺陷分析[J].钢铁研究,2010,38(3): 20-23. [28] 曹秀岭,焦小鹏,翟振华.超高强度钢帘线的生产试制[J].金属制品,2010,36 (5):7-10. [29] N. Seiki, Y. Shingo, D. Hitoshi. High-ductility high-carbon steel wire[P]. EP, 07744836.3. 2009-02-18. [30] H. Oura, N. Yoshihara. High-carbon steel wire excellent in wire drawability and fatigue property after wire drawing[P]. US, 13/638, 722. 2013-07-24. [31] L. F. Zhang. State of the art in the control of inclusions in tire cord steel - a review[J]. Steel Research Internatinal, 2006, 77(3):158-167. [32] K. Kirihara. Production technology of wire rod for high tensile strength steel cord[J]. Kobelco Technology Review, 2010, 30:62-65. [33] 孙莹, 于庆波. 82B盘条钢的组织性能及缺陷分析[J].热加工工艺, 2011, 40(21):19-21. [34] T. Shida. Developments of manufacturing steel wire rods used for high strength wires[J]. SEAISI Quarterly Journal, 2011, 40(4):46-51. [35] A. B. Sychkov, M. A. Zhigarev, S.Yu. Zhukova, et al. Production of wire rod for high-Strength reinforcing cord[J].Steel in Transtation,2010,1(40):78-79. [36] H. Ohba, T. Tarui, M. Sugimoto, et al. High-performance wire rods produced with DLP[J]. Nippon Steel Technical Report, 2007, 92:50-56. [37] T. W. Tyl. Control of furnace atmosphere during patenting in the manufacture of the steel tire cord[A].2010 Conference Proceedings of the Wire Association International, Inc.[C]. Guilford: the Wire Association International, Inc., 2010.110-120 [38] 冯伟年. 钢丝无铅索氏体化等温处理[J]. 金属制品, 2007, 33(4): 1-4. [39] S. Goto, R. Kirchheim, T. Al-Kassab. Application of cold drawn lamellar microstructure for developing ultra-high strength wires[J].Transactions of Nonferrous Metals Society of China,2007, 17:1129-1138. [40] 山崎真吾, 西田世纪, 菊地真树夫. 拉丝特性优良的高强度线材及其制造方法[P]. CN, 200780000674. X. 2011-1-12. [41] C•梅斯普隆.在锡中淬火钢线材以及由此获得的钢线材[P]. CN, 102203304A. 2011-09-28. [42] T. W. Tyl. Steel patenting technology in the manufacture of steel tire cord[J]. Wire Journal International, 2008, 41(10): 81-87. [43] 陈锐, 罗新民. 高碳钢钢丝在铅浴和CMC水溶液中的冷却行为[J]. 热加工工艺, 2006, 35(12): 29-32. [44] D. B. Park, J. W. Lee, Y. S. Lee. Effects of the annealing temperature and time on the microstructural evolution and corresponding the mechanical properties of cold-drawn steel wires[J].Transactions of Nonferrous Metals Society of China, 2007, 17:1129-1138. [45] Y. J. Li, P. Choi, S. Goto, et al. Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire[J]. Metals and Materials International, 2008, 14: 59-64. [46] Y. S. Yang, S. Y. Park, H. J. Jun, et al. Effects of microstructure on the fatigue resistance of steel tire cords[J]. Meterials Science Forum, 2005, 475-479: 4125-4128. [47] Y. S. Yang, J. G. Ba, C. G. Park. Improvement of the bending fatigue resistance of the hyper-eutectoid steel wires used for tire cords by a post-processing annealing[J]. Materials Science and Engineering A, 2008, 488: 554-561. [48] 席丙军, 张云松. 电镀液对生产厚镀层切割钢丝半成品的影响[J]. 金属制品, 2013, 39(2): 29-31. [49] 程沪生. 取代氰化物的热扩散法镀黄铜线[J]. 电镀余涂饰, 2013, 32(1): 14-17. [50] W. Weidenhaupt. Experiences with the multi-cell brassing line[A]. Proceedings of WAI's International Technical Conference[C]. Guilford: the Wire Association International, Inc., 2010.1-8. [51] 张红田, 万木春, 佘建禄. 冷却条件对高碳钢丝拉拔性能的影响[J]. 新疆钢铁, 2009, (1): 1-4. [52] M. Suliga. The influence of the multipass drawing process in classic and hydrodynamic dies on residual stresses of high carbon steel wires[J]. Achieves of Metallurgy and Materials, 2011, 56(4): 939-944. [53] M. Suliga. The influence of the high speed multipass drawing process on the fatigue strength of high carbon steel wires[J]. Metallurgy and Materials, 2012, 57(4):1171-1178. [54] S. K. Lee, D.C. Ko, B.M. Kim. Pass schedule of wire drawing process to prevent delamination for high strength steel cord wire[J]. Materials and Design, 2009, 30: 2919- 2927. [55] 姚海东, 翟常丽, 翟成勇. 湿式拉拔对钢帘线单丝抗拉强度的影响[J]. 金属制品, 2010, 36(6): 17-19. [56] 钟海平. 冷拔索氏体钢丝力学性能分析及成形工艺优化[D]. 重庆: 重庆大学, 2014. [57] N. Guo, B.F. Luan, B. S. Wang, et al. Microstructure and texture evolution in fully pearlitic steel during wire drawing[J]. Science China, 2013, 56(5): 1139-1146. [58] 杨峰, 孙玉领. SWRS82B盘条冷拔过程中显微组织和力学性能的变化[J]. 金属热处理. 2014, 39(5): 22-26. [59] 任晨辉, 王伯健. 冷拉索氏体钢丝中渗碳体的溶解行为[J]. 金属热处理. 2011, 36(6): 46-48. [60] 薛文虎. 预应力钢绞线拉拔过程断裂原因分析及工艺优化[D]. 哈尔滨: 哈尔滨工业大学, 2003. [61] 张红田. 中低碳钢丝拉拔断裂影响因素分析及研究[D]. 西安: 西安建筑科技大学, 2004. [62] 王猛, 王丽萍, 王立峰. 帘线钢组织对深度拉拔钢丝性能的影响[A]. 全国金属制品信息网第23届年会暨2013金属制品行业技术信息交流会论文集[C]. 郑州: 金属制品杂志编辑部, 2013: 240~245. [63] 袁伟伟. 高碳超高强钢帘线的显微组织和性能研究[D]. 南京: 东南大学, 2011. [64] 傅旭超. 中碳钢丝拉拔过程中的组织与性能研究[D]. 南京: 南京理工大学, 2013. [65] 崔振铎, 刘华山. 金属材料及热处理[M]. 湖南: 中南大学出版社, 2010. [66] 潘金生, 仝健民, 田民波. 材料科学金属[M]. 北京: 清华大学出版社, 2012. [67] 丁美良, 关建辉. GCrl5钢离异共析转变前沿生长速度的计算[J]. 热处理技术与装备, 2013, 34(5): 8-11. [68] K. Ankit, R. Mukherjee, T. Mittnacht, et al. Deviations from cooperative growth mode during eutectoid transformation: Insights from a phase-field approach[J]. Acta Materialia, 2014, 81: 204-210. [69] H. Rastegari, A. Kermanpur, A. Najafizadeh. Investigating the effects of short time austenitizing and cooling rate on pearlitic microstructure and mechanical properties of a hot rolled plain eutectoid carbon steel[J]. Materials and Design, 2015, 67:217-223. [70] 凯里斯特. 材料科学与工程基础[M]. 北京: 化学工业出版社, 2012. [71] 李祥才, 方国章, 冯钦刚, 等. 降低 C82DA 胎圈钢丝用盘条脱碳层深度的研究[J]. 金属制品, 2013, 39(2): 32-33. [72] 赵如龙, 李义长, 王洪利, 等. P72LXA 钢帘线用热轧盘条表面脱碳层的研究[J]. 金属热处理, 2013, 38(7): 65-69. [73] Y. J. Li, P. Choi, C. Borchers, et al. Atomic-scale mechanisms of deformation- induced cementite decomposition in pearlite[J]. Acta Materialia, 2011, 59: 3965–3977. [74] H. Takahashi, H.Lizuka. Fatigue failure mechanism of steel cords in synchronous belts[A]. ASME 2003 Design Engineering Technical Conference and Computers and Information in Engineering Conference[C]. New York: American Society of Mechanical Engineers, 2003. 155~161. [75] D. K. Zhang, H. Geng, Z. F. Zhang, etal. Investigation on the fretting fatigue behaviors of steel wires under different strain ratios[J]. Wear, 2013, 303: 334-342. [76] 邹力扬. 热处理钢丝表面挂铅的原因分析及预防措施[J]. 科技与企业, 2012, (20): 272~273.

﹀展开
开放日期:

 2018-07-01

无标题文档